
About BioValence

Viruses

Viruses impact our quality of life, our pets and our food production systems. Biovalence has novel technology platforms that focus on making broadspectrum antiviral proteins that are can be orally administered. These proteins can enter cells and even the bone marrow. RetroMAD1 is our lead drug. We have *in vitro* and *in vivo* results for many unrelated viruses in a range of animal models.

ioValence

Antiviral & Anticancer

Technologies

Cancer is so widespread that almost everyone has lost at least one family member to this terrible disease. Cures are still few and far between and the majority of cancer drugs only prolong life expectancy

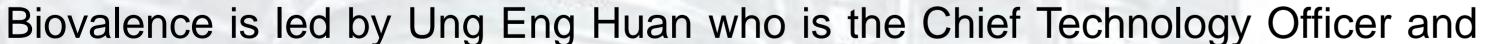
by months or at the most years. We are developing new anticancer therapeutic proteins that have so far showed promise in cell line assays.

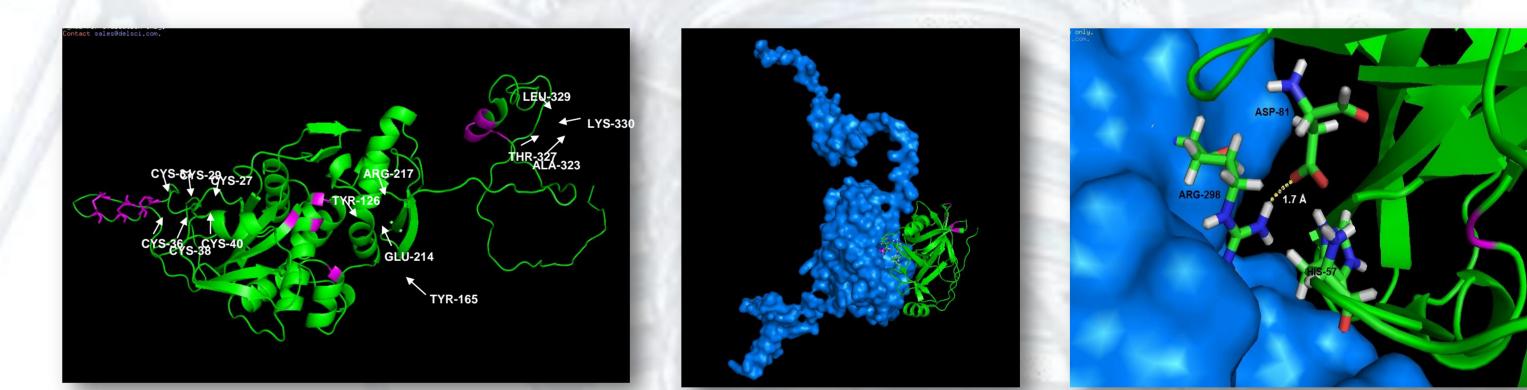
Aquaculture Diseases

Aquaculture accounts for half of all the seafood consumed today. It is the fastest growing animal production system but one that is constantly plagued by diseases that spread with relative ease in the aquatic environment. We are developing immune-stimulants, bacteriophages and antiviral proteins that can protect these fragile but highly necessary food production systems.

Research Infrastructure

We have a Discovery Lab for bench top research and an Upscale Optimization Lab for solving various problems commonly encountered in recombinant protein upscale. We have also invested in a GMP Clinical Batch production facility that is expected to be PIC/S certified sometime in 2014. State-of-the-Art research infrastructure ensures predictability and repeatability for our platform research.


Bio-Informatics


As we carry out gene-mining for antiviral and anticancer applications, we employ leading edge Bio-Informatics to assist us in Drug Design and Candidate Selection. Bio-Informatics also helps us answer questions regarding mechanism of action and helps to suggest new disease targets for us to consider using our novel Platform Technologies.

DNA/RNA Extraction Technologies

Key Personel

We have been using our own DNA/RNA extraction kits for the last 3 years and our results are equivalent with the leading brands found within the market. We are now exploring OEM production for a client in the EU and are open to exploring similar arrangements with potential clients anywhere. Send an email to tmo@biovalence.com.my, if you have any interest.

acting CEO together with Prof. Shamala Devi as CSO. Other key Principal Investigators are Awang Mohammed Sagaf (Recombinant Proteins), Dr. Hussin Alwan (Molecular Medicine) and Dr. Teoh Teow Chong (Bio-Informatics). They are supported by capable teams each tasked with solving particular issues.

Business Interest

We wish to target 'low hanging fruit' first such as the Aquaculture and Companion Animal markets while developing Human applications for outlicensing to reputable Pharmaceutical. companies. We are also collaborating with other companies that wish to see their protein-based therapeutic made into an oral delivery drug. Supply of DNA/RNA extraction kits on OEM basis is another new business interest.

Please forward any enquiries to tmo@biovalence.com.my

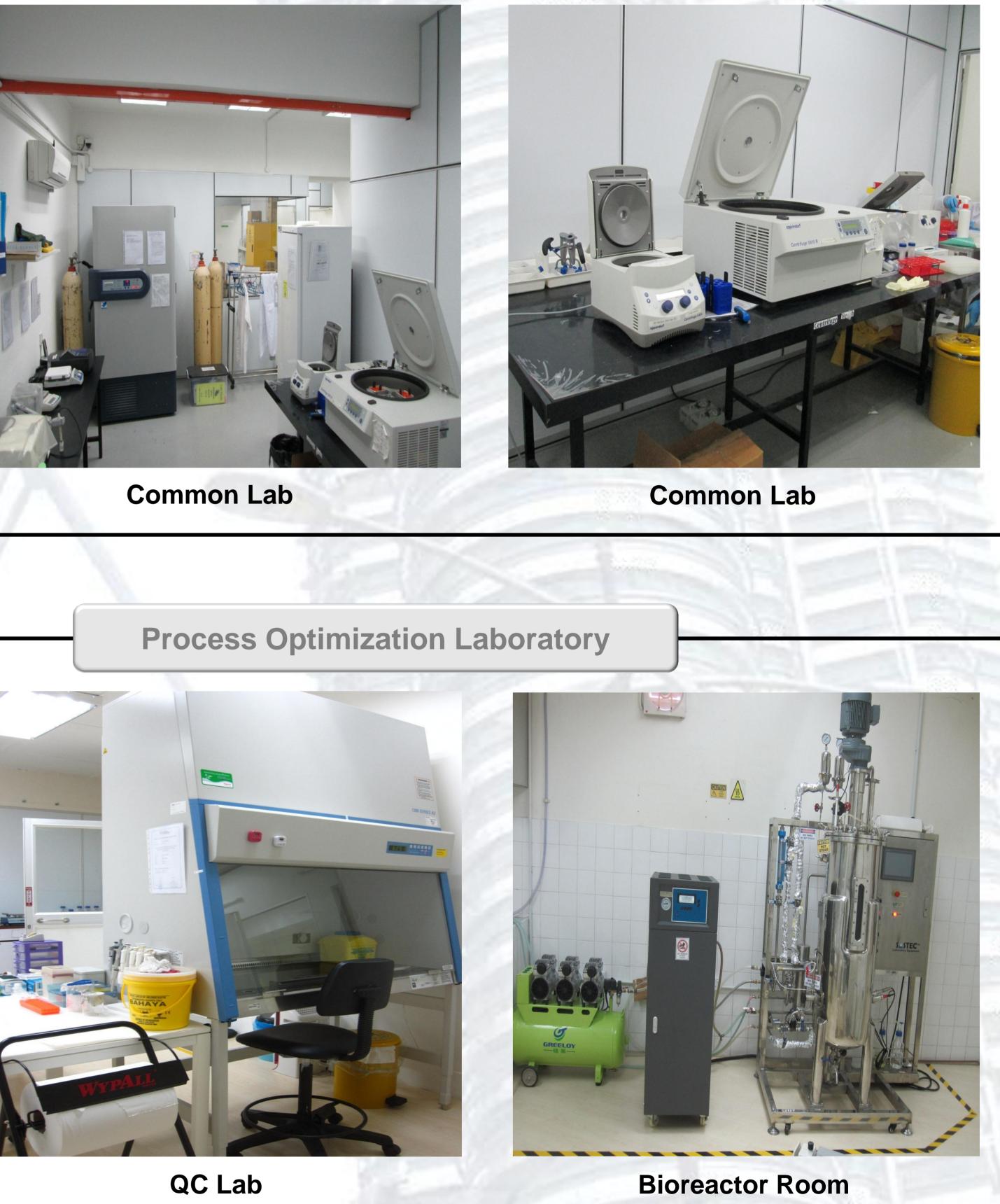
Facilities Geared Toward Becoming A Drug Discovery Engine

BioValence has 3 facilities in Kuala Lumpur:

 Research and development laboratory Process optimization laboratory ✓ GMP manufacturing facility (audits & validation to complete in 2014)

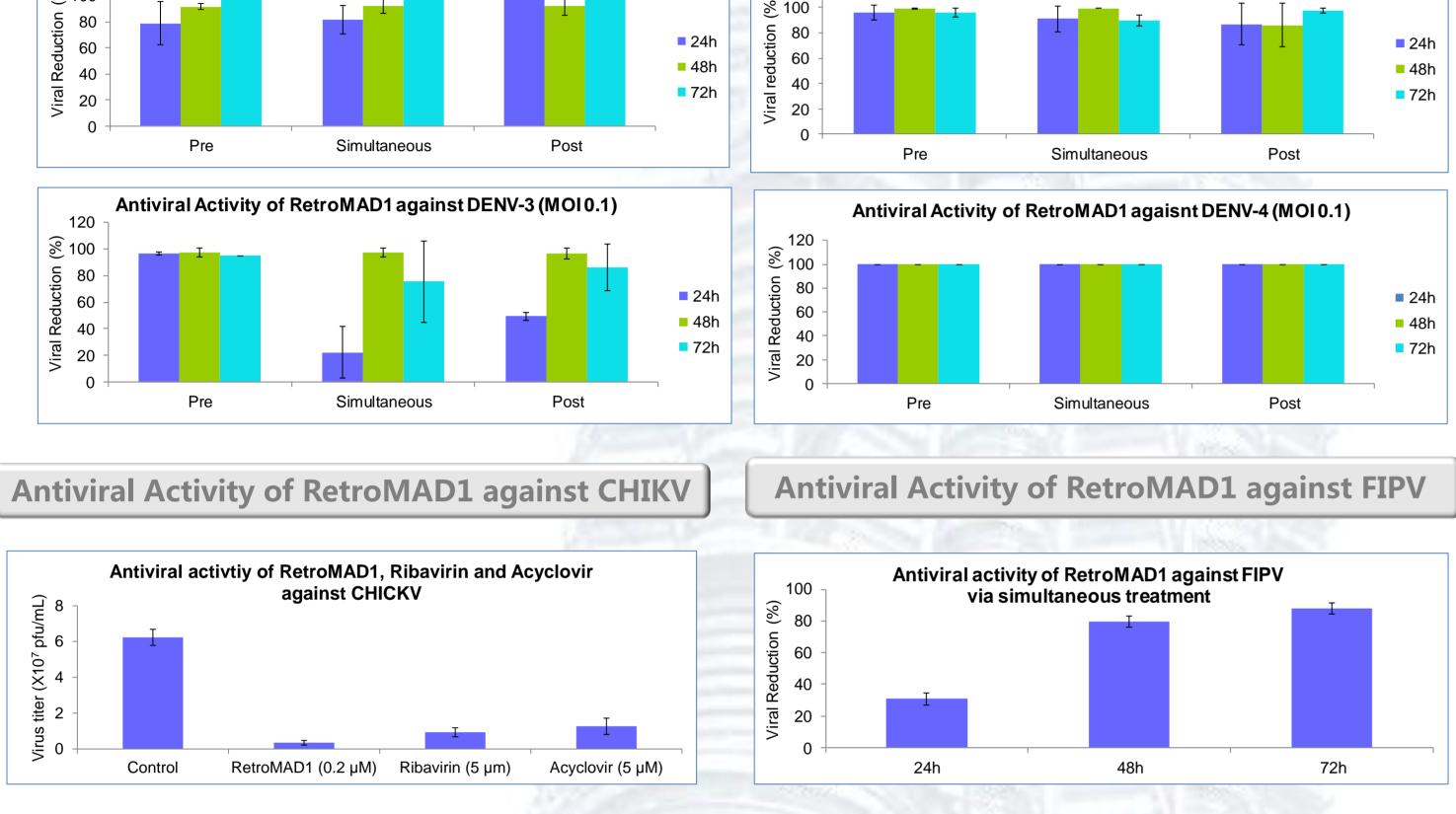
Research & Development Laboratory

GMP Manufacturing Facility



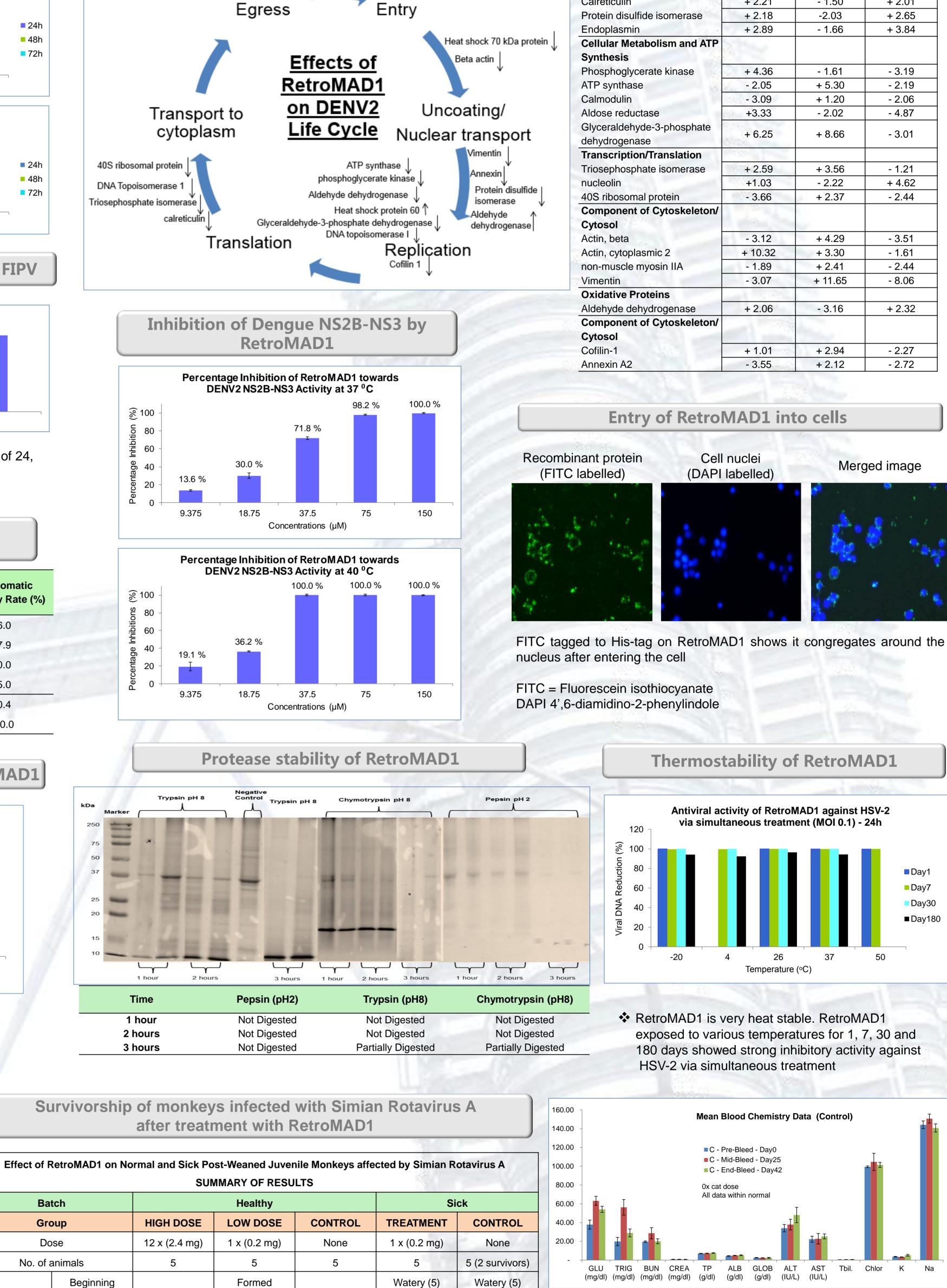
Cell Culture Lab

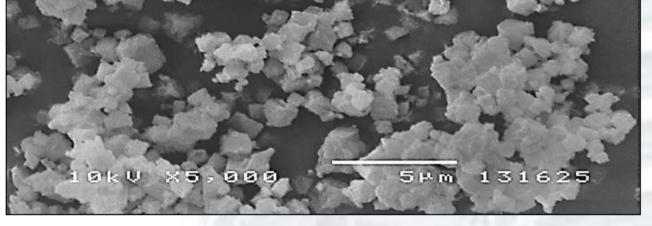
Microbiology Lab

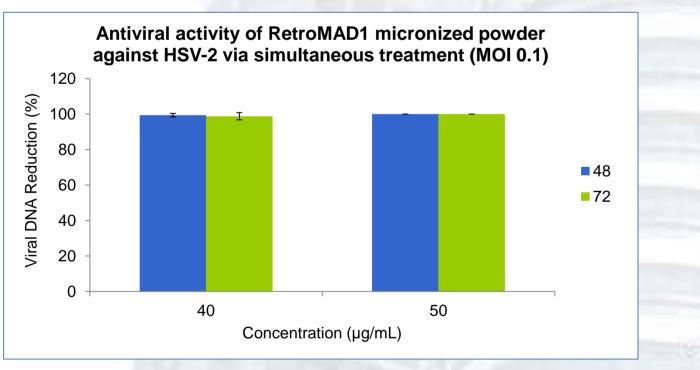

Centrifuge Room

Main Lab

RetroMAD1 Our Lead Drug

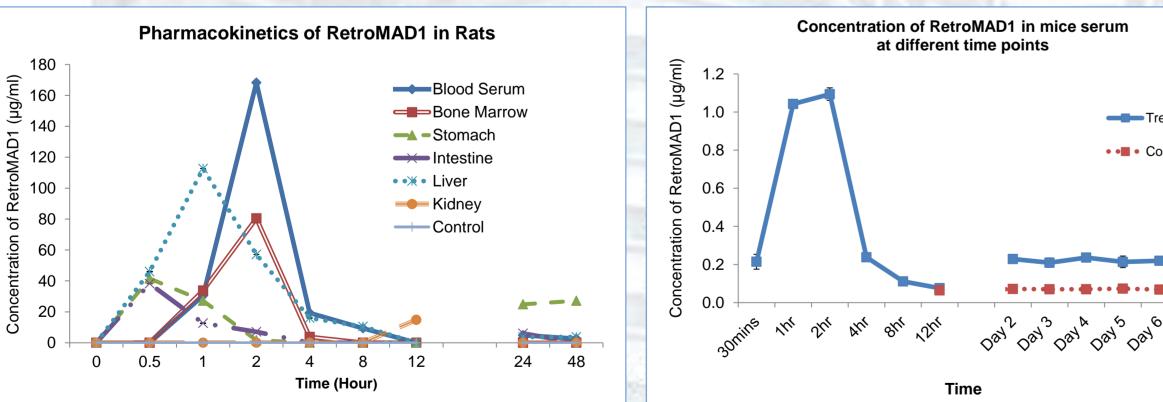

Ν	laximum N	on-toxic Dos	e (MNTD) of	Retromad	1 against V	arious Norm	al Cells Lir	nes	Mechanism of Ac		roteomics for HSV-2	Upregulated /	Cells + RetroMAD1	Cells + Virus (HSV2	Cells + Virus (HSV2)+
Ce	ell Lines	Vero	LLC-MK2	BHK-21	RWPE-1	Chang's	NL-20	CCD-			Calnexin	Downregulated Proteins Protein Folding Protein disulfide-isomerase	+1.87	-5.03	+2.03
	Time					Liver		1127SK	Eç	gress E	Entry Protein Disulfide Isomerase	Calnexin Heat shock 70 kDa protein	-2.51	+3.77	- 6.17 +1.84
	24h	100	100	200	100	100	200	100			Peroxiredoxin-6	Energy, Transport, Metabolism	-1.00	-9.07	+1.04
MNTD (µg/mL)	48h	100	100	100	100	100	100	100		Effects of RetroMAD1	Superoxide 1	Nucleoside diphosphate kinase	+1.55	-1.11	+2.48
	72h	100	50	100	100	100	100	100	Transport to	on HSV-2	Uncoating/	Glyceraldehyde-3-phosphate dehydrogenase	-1.27	+2.90	-1.24
		Antivira	Activity of	RetroMAD	1 against H	SV-1 and HS	SV-2		cytoplasm	Life Cycle	Nuclear transport	Triosephosphate isomerase Oxidative Proteins	+2.60	+2.41	+1.47
		/							-,			Superoxide dismutase	+1.14	-3.38	+3.52
							2.2		40S ribosomal protein			Peroxiredoxin-6	+1.82	-1.30	+1.98
120 🧃	Antiviral Activity of	of RetroMAD1 against	t HSV-1 (MOI 0.1)	120	Г	vity of RetroMAD1 ag	ainst HSV-2 (MOI	0.1)	\mathbf{v}	Glyceraldehyde-3-phosphat	e l	Transcription/Translation			
€ 100 -	<u> </u>	Т	<u> </u>	100	_				Heterogeneous nuclear ribonucleo protein A1	dehydrogenase	-↓ _	40S ribosomal protein	+4.7	+2.78	-1.73
- 08 gr	1	I		■ 24h	-			2 4	Nucleolin	Triosephosphate isomeras	\mathbf{v}	Heterogeneous nuclear ribonucleo protein A1	-1.07	-2.14	-1.08
<u>පි</u> 40 -				■ 48h	_			■48 ■72	* Trans	lation	Replication	Nucleolin	-1.55	-10.04	+17.89
02 Aira				02 <u><irallelian< u=""></irallelian<></u>				-12			Cofilin 1	Cytoskeleton	.1.01		+1.27
0 +				0	Pro	Simultanouco	Pag	•			\checkmark	Cofilin-1	+1.01	+2.94	+1.27
	Pre Antivir	Simultaneous	Post RetroMAD1	against DE	Pre	Simultanoues	B and DEN		Mechanism of Acti	on based on Pro	teomics for DENV-2	Upregulated / downregulated Proteins	Cells + RetroMAD1	Cells + Virus (DENV2)	Cells + Virus (DENV2)+ RetroMAD1
						1. S. S. S.	1.0					Protein Folding	4.		
	ntiviral Activity of	RetroMAD1 against D	ENV-1 (MOI 0.1)		Antiviral Activit	y of RetroMAD1 aga	inst DENV-2 (MO	10.1)				DNA Topoisomerase 1	+ 1.91	+ 3.13	- 4.80
120 <pre>120</pre>				120	1							Heat shock 70 kDa protein	- 4.49	+ 2.11	- 3.93
	т т —	_ T _			_	_			_			Calreticulin	+ 2.21	- 1.50	+ 2.01

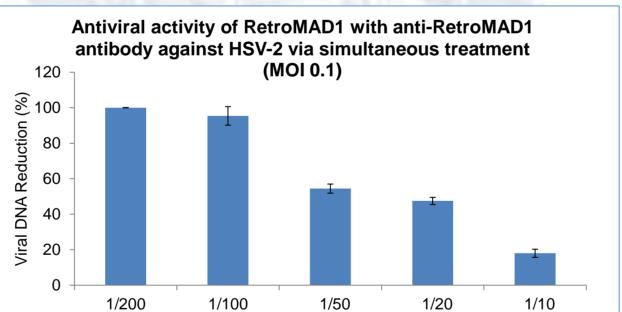



* RetroMAD1 was found to be effective against all the HSV, Dengue, Chikungunya and FIPV viruses over an incubation period of 24, 48 and 72h.

The inhibitory effect of RetroMAD1 could be via blocking of viral absorption, replication and also via virucidal effects.

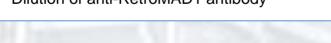
Micronized Powder of RetroMAD1		Effects of RetroMAD1 of and Canine Virus		ne
		Disease / Infection	Sample No.	Symptomatic Recovery Rate (%)
		Feline Immunodeficiency Virus (FIV)	25	76.0
		Feline Leukemia Virus (FeLV)	28	67.9
been man 2018 and and and	Feline viruses	Feline Panleukopenia Virus (FPV)	10	90.0
and the state of the state		Feline Calicivirus (FCV)	8	75.0
	Quality in the	Canine Parvovirus (CPV2)	143	80.4
	Canine viruses	Canine Coronavirus (CCV)	3	100.0



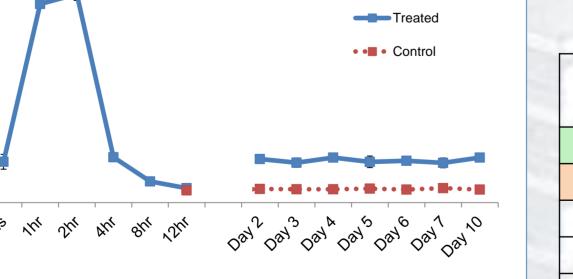


RetroMAD1 in powder form exhibited strong inhibitory activity against HSV-2 via simultaneous treatment giving more than 85% of inhibition

Pharmacokinetics of RetroMAD1 in rats and mice



Batch


Group

Dose

Serum bioavailability in rats

✤ Of 9000 µg RetroMAD1 fed, 370.47 µg were detected by capture ELISA over a 12h period indicating 4% of bioavailability

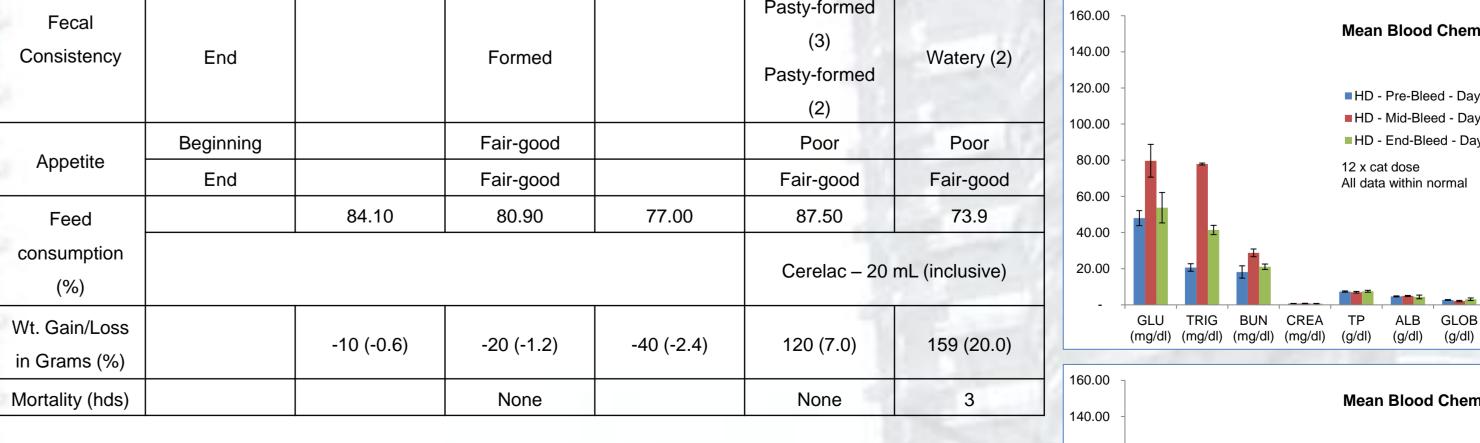
Serum bioavailability in guinea pigs

✤ Of 1050 µg RetroMAD1 fed, 893.28 µg were detected by capture ELISA over a 12h period indicating 85% of bioavailability

Acute toxicity of RetroMAD1 on rats

Acute toxicity study showed that RetroMAD1 did not exhibit any adverse reaction (mortality / histopathological effects) on rats up to 500 times the therapeutic dose (0.2 mg/kg)

Liver Profile

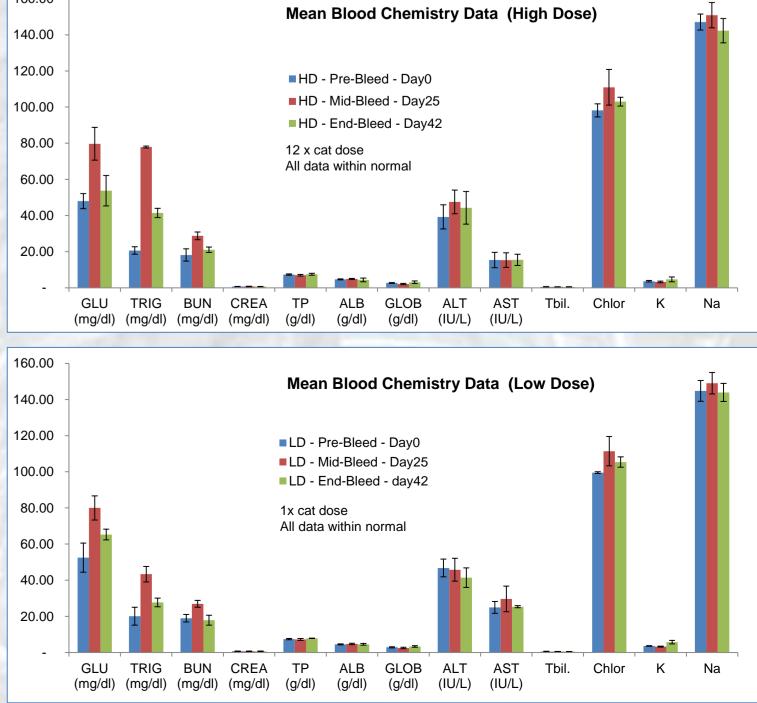

	Dosage	ALT U/L	AST U/L
	Control	49.33 ± 10.33	158.28 ± 19.01
Male	Low Dose	44.70 ± 8.75	159.40 ± 29.45
	High Dose	50.10 ± 7.36	163.7 3± 60.03
	Control	45.45 ± 5.15	164.15 ± 24.18
Female	Low Dose	32.32 ± 5.71	146.52 ± 7.22
	High Dose	41.58 ± 6.06	156.12 ± 17.35

The lower level of Alanine Aminotransferase (ALT) suggests that change in liver function had not occurred. This reading indicates that orally administered RetroMAD1 has no toxic effect on the liver function of rats.

Kidney Profile

and the second		Dosage	Creatine Umol/L	Urea Mmol/L
		Control	40.83 ± 3.54	8.17±1.16
there a	Male	Low Dose	43.67 ± 5.57	6.65 ± 0.73*
		High Dose	40.33 ± 8.36	6.37 ± 0.91*
		Control	44.00 ± 2.94	10.03 ± 1.53
	Female	Low Dose	46.83 ± 3.82	8.15 ± 1.73
194		High Dose	49.17 ± 4.62	10.08 ± 1.00

The lower levels of Blood Urea Nitrogen (BUN) does not indicate renal malfunction. Moreover the values of creatine levels when compared to control suggest that RetroMAD1 did not induce renal abnormalities.



Toxicology study was carried out at a primate centre SICONBREC, an AAALAC facility near Manila.

The main observation was a slight increase in blood triglycerides in the high-dose group. All other blood profile parameters were within expected ranges.

Hematology, histopathology and blood chemistry were noted to be within the standard range. No lesions were observed in the low dose group.

✤ 5/5 of treated monkeys survived while in the untreated control group 2/5 survived. Simian Rotavirus was confirmed to be present only in the faeces of sick monkeys.

Day1

Day7

Day30

■ Day180

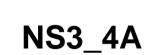
Molecular Docking for RetroMAD1

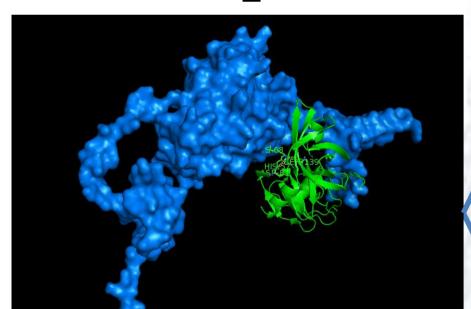
Molecular Docking

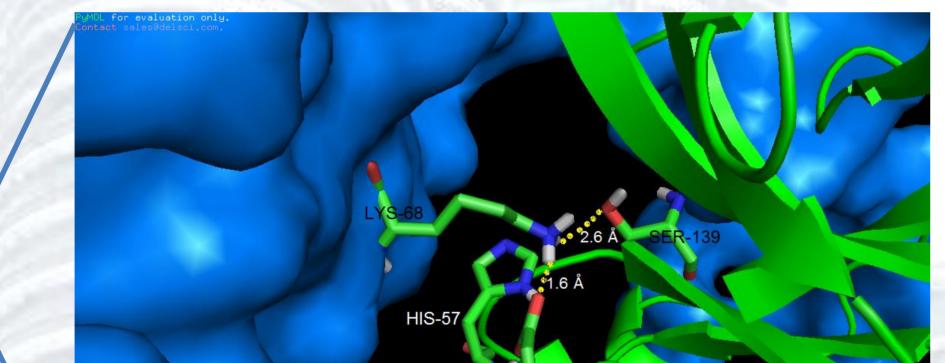
- ✓ Docked energy, Van der Waals, electrostatic, biding site confirmation, pi-pi interactions
- \checkmark Two main types:
- Protein-protein docking
 - Extensive computational power and time
 - Example: HadDock, FireDock
- Ligand-protein docking **II**.
 - Moderate computational requirement
 - Example: AutoDock 4, AutoDock Vina

Current Study

BioValence

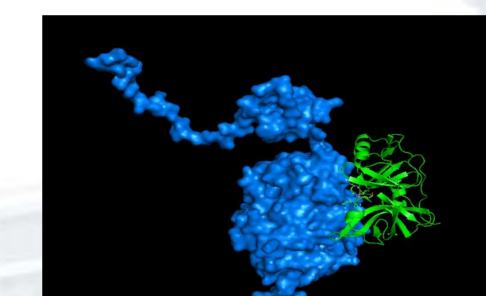

Antiviral & Anticancer

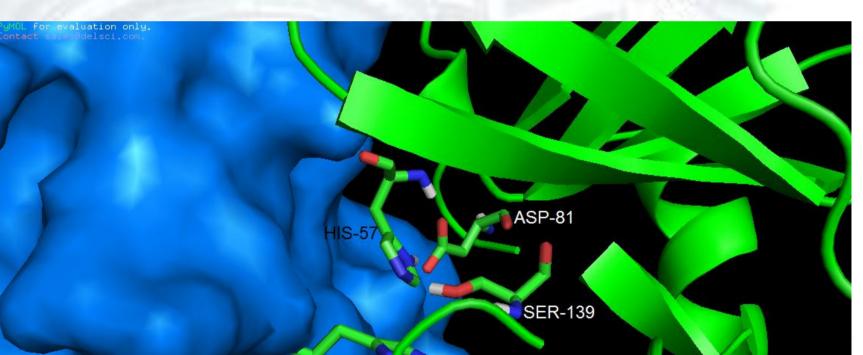

Technologies

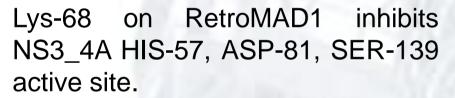

- Protein-protein docking \checkmark
- Both NS2B_NS3 and NS3_4A are serine proteases \checkmark
- NS3_4A: His-57, Asp-81 and Serine-139; chain A/C \checkmark Protease/Helicase
- ✓ NS2B_NS3: His-51, Asp-75 and Serine-135; chain B
- First comparative docking studies of NS2B_NS3 and NS3_4A by \checkmark RetroMAD1 antiviral chimeric peptide using HadDock and FireDock

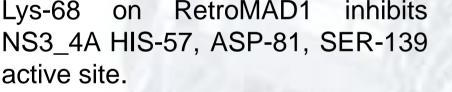
Active site-active site docking of RetroMAD1 to NS3_4A/NS2B_NS3

HadDock	Docked Energy	Van der Waals	Electrostatic
Receptor/ligand	(kJ/mol)	(kJ/mol)	(kJ/mol)
RetroMAD1(receptor)			
ligand			
NS3_4A-Lys68*	-79.2 ± 6.2	-53.2 ± 6.0	-299.0 ± 69.3
NS2B_NS3-Ile30_leu31^	-70.3 ± 2.1	-39.7 ± 2.7	-238.2 ± 22.3
NS3_4A*(receptor)			
ligand			
RetroMAD1-Lys68	-108.0 ± 12.6	$\textbf{-59.9} \pm \textbf{13.2}$	-330.4 ± 40.9
RetroMAD1-His85	-99.0 ± 4.7	-72.4 ± 4.9	-191.3 ± 25.6
NS2B_NS3 [^] (receptor)	1		
ligand			
RetroMAD1-Arg101	$\textbf{-93.4} \pm \textbf{8.7}$	-70.9 ± 7.0	-247.3 ± 38.0

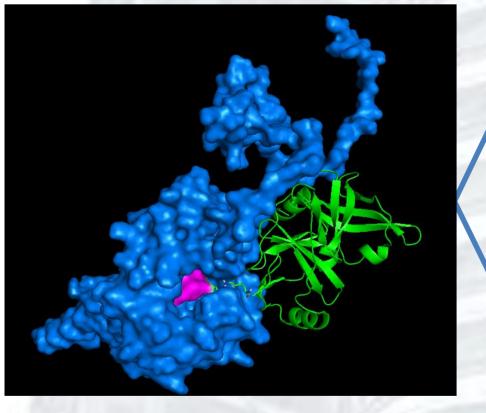


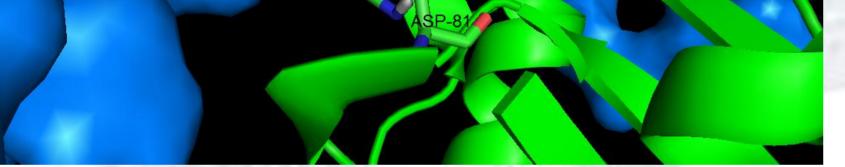

NS3_4A (HIS-57,ASP-81,SER-139) -108.0 ± 12.6 kJ/mol

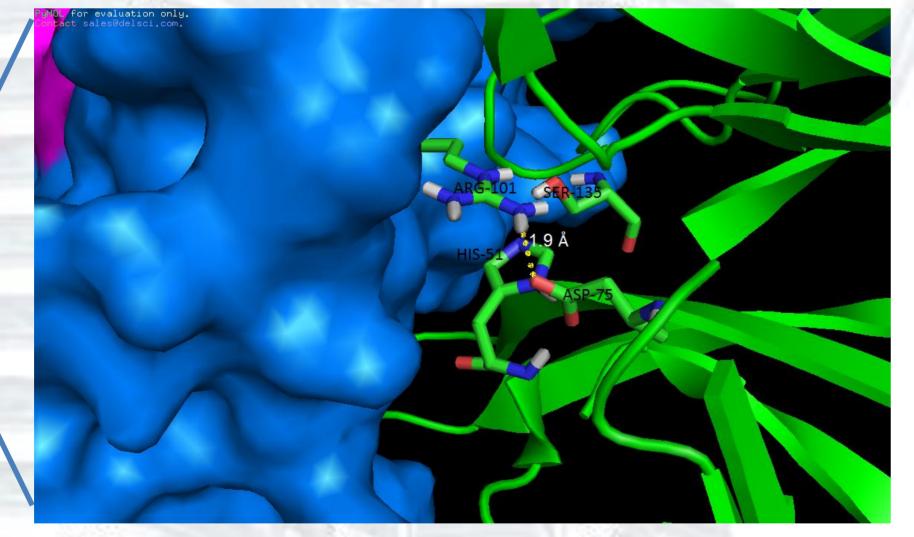

Docking software	Docked Energy (kJ/mol)	Van der Waals (kJ/mol)	Electrostatic (kJ/mol)	Binding site
HadDock	4.2			
(targeted)				
NS3_4A*	-78.7 ± 14.1	-44.0 ± 10.1	-399.6 ± 32.8	Yes
NS2B_NS3^	-67.3 ± 5.3	-60.7 ± 5.7	-225.6 ± 9.2	Yes
FireDock				
(blind)				
NS3_4A*	-18.12	-4.82	-3.76	No
NS3_4A+	-57.87	-31.71	-19.68	No
NS2B_NS3 ⁺	-9.72	-19.88	-40.71	No


NS3_4A (HIS-57,ASP-81,SER-139) -99.0 ± 4.7 kJ/mol

NS3_4A







RetroMAD1 TYR-126, TYR-165,GLU-214,ARG-217 active site binds to LYS-68 on NS3_4A

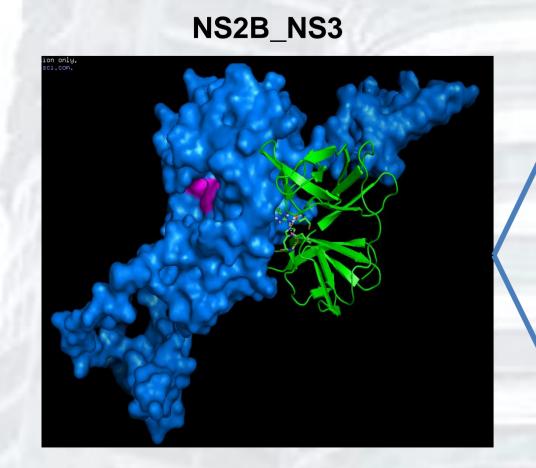
Hydrogen bond 1.6 Å between LYS-68 (RetroMAD1) and ASP-81 (NS3_4A putative binding site); Hydrogen bond 2.6 Å between LYS-68 (RetroMAD1) and SER-139 (NS3_4A putative binding site) Green: C; white: H; red: O; blue: N; blue molecule: RetroMAD1; green molecule: NS3_4A; yellow dotted line: hydrogen bond.

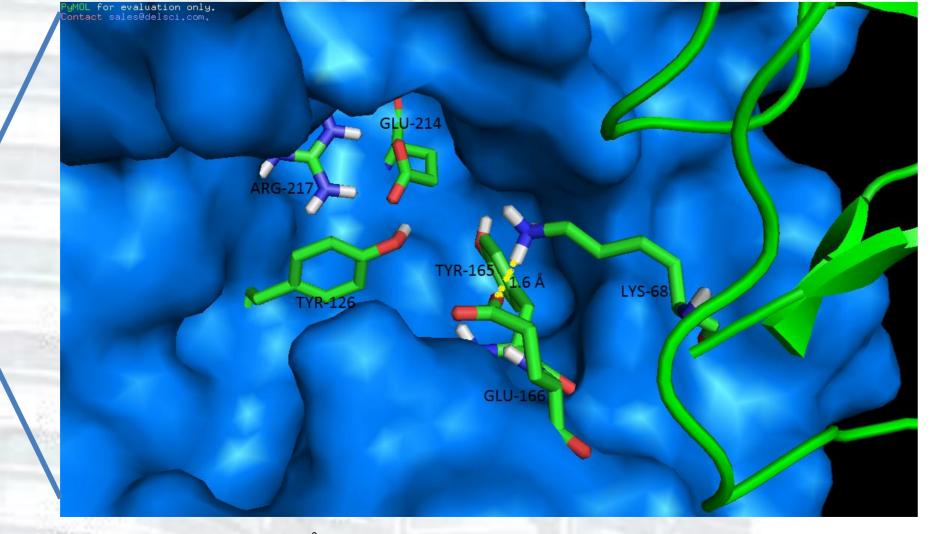
RetroMAD1 (TYR-126,TYR-165,GLU-214,ARG-217) -79.2 ± 6.2kJ/mol


Hydrogen bond 1.6 Å between LYS-68 (NS3_4A) and GLU-166 (near RetroMAD1 binding site);

Green: C; white: H; red: O; blue: N; blue molecule: RetroMAD1; green molecule: NS3_4A; yellow dotted line: hydrogen bond.

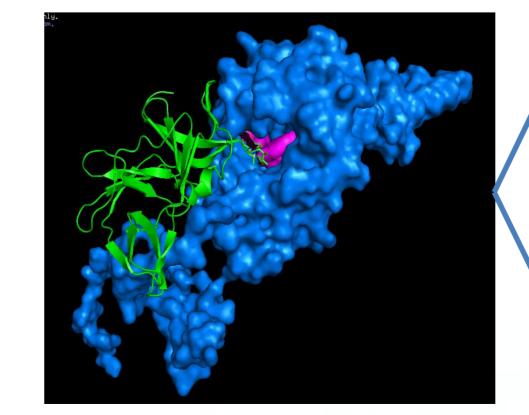
NS2B_NS3 (HIS-51,ASP-75,SER-135) -93.4 ± 8.7 kJ/mol


NS3_4A HIS-57, ASP-81, SER-139 active site.

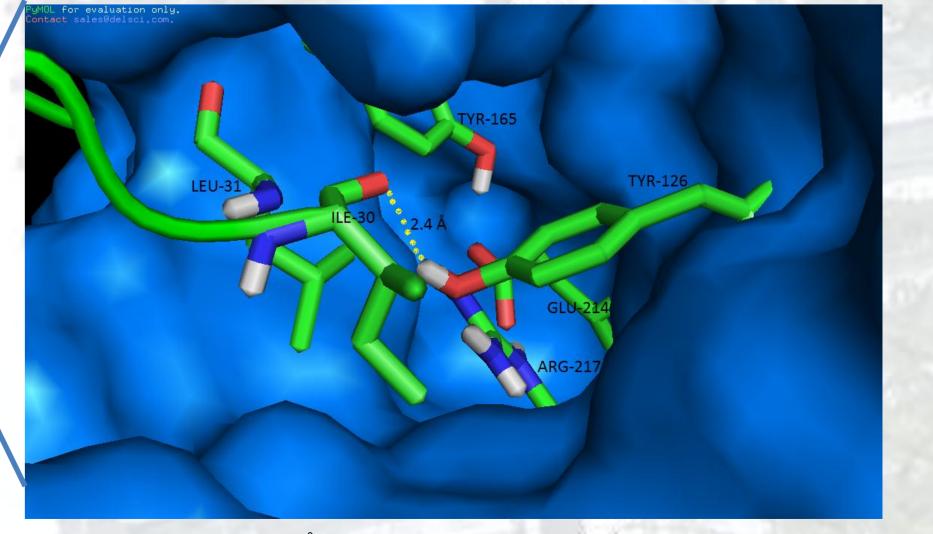

No hydrogen bond. Green: C; white: H; red: O; blue: N; blue molecule: RetroMAD1; green molecule: NS3_4A.

- HadDock produced more consistent results
- RetroMAD1 showed comparable inhibition to both HCV NS3_4A and Dengue NS2B_NS3 proteases
- Lock-and-key docking produced better results
- RetroMAD1 as a ligand, RetroMAD1-Lys68 showed best inhibition to NS3_4A at -108.0 ± 12.6 kJ/mol, followed by RetroMAD1-Arg101 to NS2B_NS3 at -93.4 ± 8.7 kJ/mol
- RetroMAD1 as a receptor, moderate inhibition was obtained
 - Indeed, RetroMAD1 is more specific as a receptor for adenosine in eukaryotic ribosome and viral polynucleotide
- Molecular interactions mainly due to electrostatic and Van der Waals interactions

NS2B_NS3 (HIS-51,ASP-75,SER-135) -70.3 ± 2.1 kJ/mol



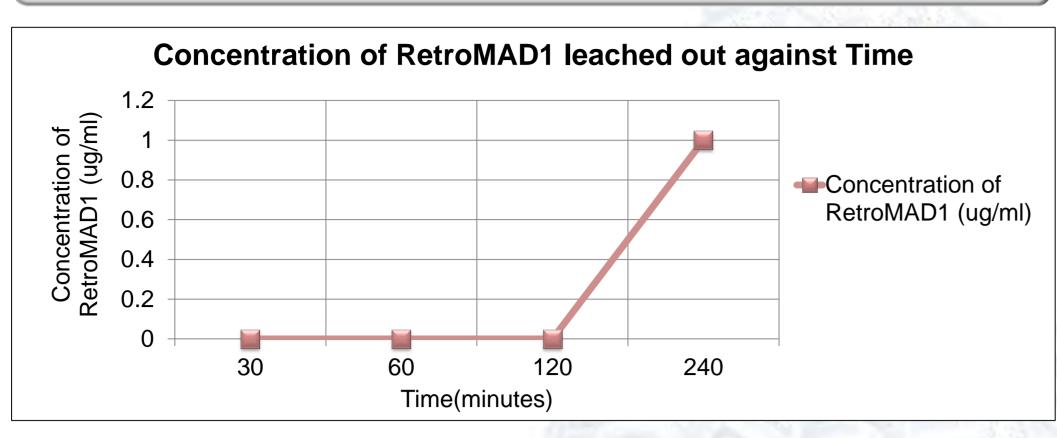
ARG-101 on RetroMAD1 inhibits NS2B_NS3 HIS-51, ASP-75, SER-135 active site



Hydrogen bond 1.9 Å between ARG-101 (RetroMAD1) and ASP-75 (NS2B_NS3 putative binding site) Green: C; white: H; Red: O; blue: N; magenta patch: putative binding site; blue molecule: RetroMAD1; green molecule: NS2B_NS3; yellow dotted line: hydrogen bond.

NS2B_NS3

RetroMAD1 HIS-51, ASP-75, SER-135 active site binds to Ile30_leu31 on NS2B_NS3.



Hydrogen bond 2.4 Å between ILE-30 (NS2B_NS3) and TYR-126 (RetroMAD1 putative binding site) Green: C; white: H; Red: O; blue: N; blue molecule: RetroMAD1; green molecule: NS2B_NS3; yellow dotted line: hydrogen bond.

Aquaculture

Low leaching rate demonstrated from feed pellets

- Concentration of RetroMAD1 that has leached out of the feed pellet is determined using capture ELISA
- RetroMAD1 can be retained in feed wafer for up to 2 hours which is sufficient time for the prawn or fish to consume with minimal loss of the drug.

This experiment shows that RetroMAD1 can be coated into feed pellets for aquaculture animals.

Retention of RetroMAD1 in Shrimp after long term feeding

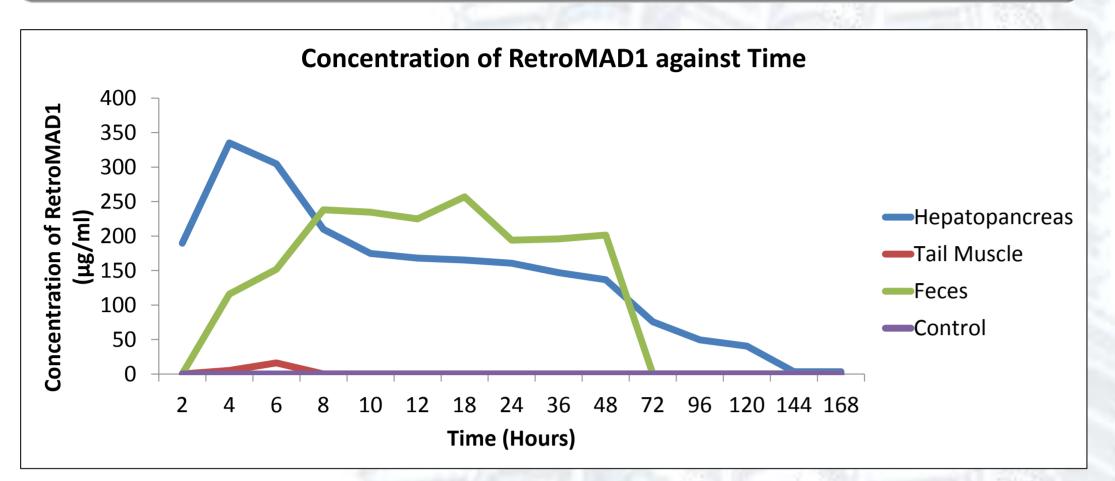
Monodon Baculovirus (MBV)

	PCR R	esults	
P.vannamei	Day 0	Day 7	Day 14
Animal 1	Positive	Positive	Negative
Animal 2	Positive	Positive	Negative
Animal 3	Positive	Positive	Negative
Animal 4	Positive	Positive	Negative

Table: Results of PCR for MBV post RetroMAD1 treatment. Time needed for sero- reversal to occur in MBV shrimp when treated with RetroMAD1.

- PCR results shows that after week 1 shrimp were negative for the Monodon Baculovirus.
- RetroMAD1 efficiently eliminated MBV from shrimp. Larger sample size will be conducted in the future.

RetroMAD1 can be used for MBV virus clean up in shrimp


Shrimp Hepatopancreatic Parvovirus (HPV)

- Palaemonetes kadakensis with HPV were fed RetroMAD1 for 4days
- PCR for the highly conserved 441 bp coatprotein of the virus wad done and compared against unfed control.

RetroMAD1 effectively eliminate HPV from shrimp in 4 days.

Results of WSSV Challenge assay using RetroMAD1

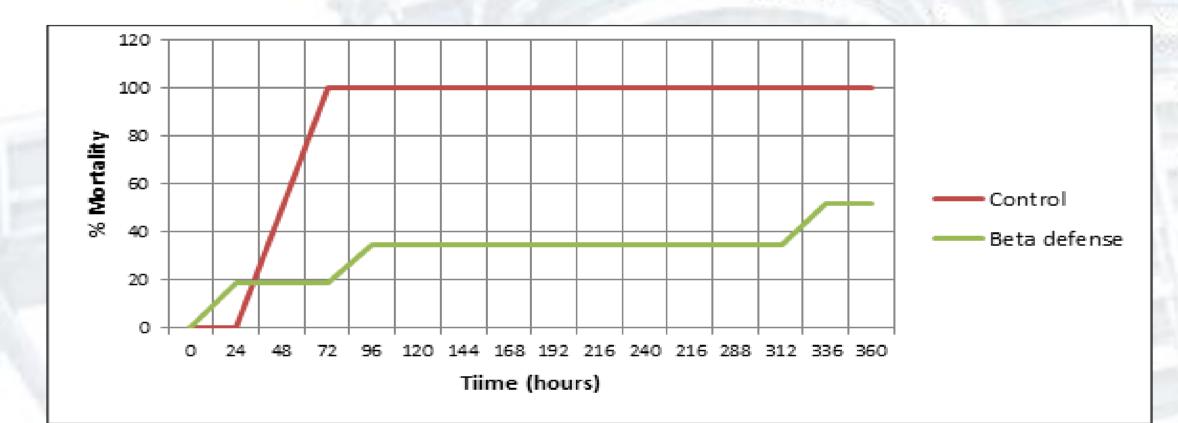
Graph of concentration of RetroMAD1 in hepatopancrease, tail muscle and feces against time.

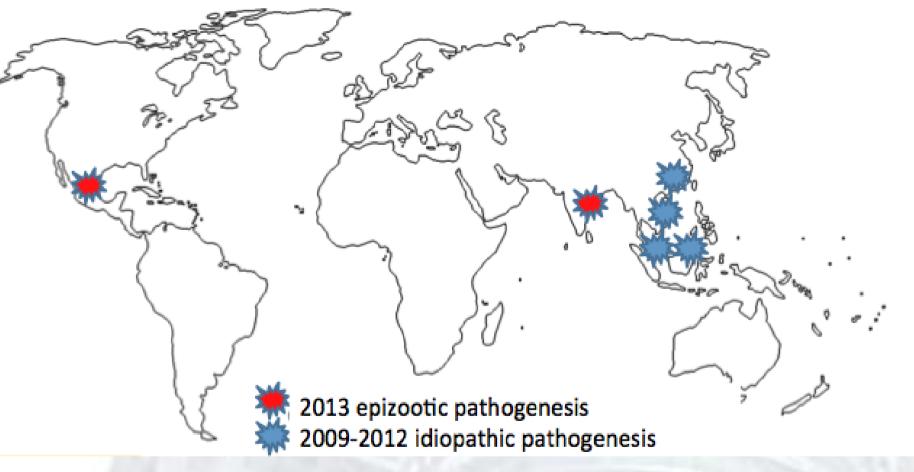
- Each shrimp was fed with 0.2g for shrimp feed containing RetroMAD1 of 300mg/kg
- Absorption, retention and excretion were studied for up to 7 days
- 2-4 hours RetroMAD1 was absorbed into the hepatopancreas then showing a decrease
- ✤ 4-8 hours RetroMAD1 was absorbed into the tail muscle
- 8 hours onwards RetroMAD1 is excreted into the feces

This study suggests that RetroMAD1 can be orally delivered to the shrimp and will not be retained in the body and organs of shrimp within a week of consumption.

Early Mortality Syndrome (EMS) leads to huge price increase

The Globalization of EMS a very recent disease compared to WSSV

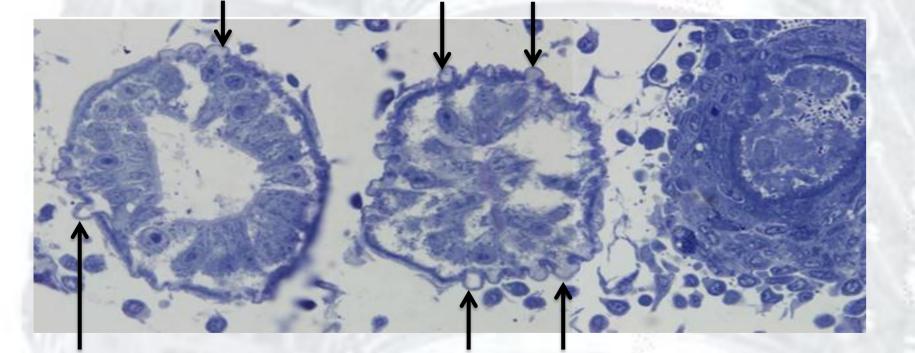



		THEY	N	lortality (%	6)		
Tanks	24	48	72	96	120	144	168
	hours	hours	hours	hours	hours	hours	hours
Control (+) 1	0	60	90	100	100	100	100
Control (+) 2	0	20	100	100	100	100	100
RetroMAD1-1	0	0	0	0	0	0	0
RetroMAD1-2	0	0	0	0	0	0	0
Control (-) 1	0	0	0	0	0	0	0
Control (-) 2	0	0	0	0	0	0	0

Positive control shrimp were all killed by 96 hours.

Orally infected PCR positive WSSV shrimp are converted to PCR negative shrimp with 100% survival using RetroMAD1.

Improved survival against White Spot Syndrome Virus (WSSV) using Beta-Defense



Early Mortality Syndrome (EMS) is an emerging disease caused by bacteria. This disease is often fatal to shrimp. Infected shrimp ponds can experience loss rates as high as 100 percent.

Since EMS was first reported in China in 2009, it has spread to Vietnam, Malaysia and Thailand, and now causes annual losses more than U.S. \$2 billion. EMS outbreaks typically occur within the first 30 days after stocking a newly prepared shrimp pond, and mortality can exceed 70%. There is now a global shortfall of 1 million MT/year of shrimp supply due to EMS.

BioValence is researching on various mitigation strategies to overcome this disease.

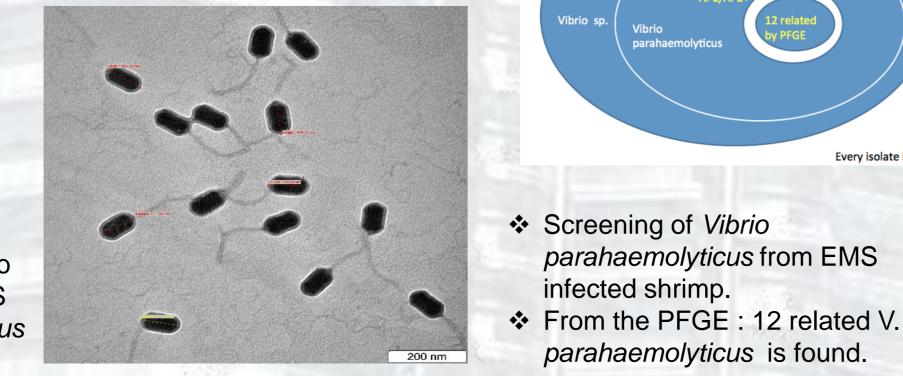
Control

- Prawns cultured for 40 days in the farm before being subjected to WSSV oral challenge.
- Beta Defense provides significant protection against WSSV.

Field Trial with Beta-Defense & RetroMAD1

Treatment	Pond	Size(Ha)	Stocking	No. pcs.	Pcs/m2	Harvest	DOC	size (g)	harvest(kg)	feed used	FCR	MT/ha	survival%
Z+E+BS	C3	0.60	09/11/13	500000	83	20/01/14	73	12.68	5,632.00	7,819.00	1.39	9.39	88.83
Z+E+BS	C4	0.60	09/11/13	500000	83	25/01/14	77	14.57	7,299.95	8,623.00	1.18	12.17	100.21
Z+S+BS	C1	0.60	04/11/13	500000	83	24/01/14	81	15.80	7,078.00	9,176.00	1.3	11.80	89.59
Z+S+BS	C2	0.60	10/11/13	500000	83	26/01/14	77	13.58	6,932.00	8,925.00	1.29	11.55	102.09
BS	C6	0.60	16/11/13	500000	83	27/01/14	72	14.40	6,424.54	7,306.00	1.14	10.71	89.23
BS	C5	0.60	16/11/13	500000	83	28/01/14	73	13.95	5,916.65	7,232.00	1.22	9.86	84.83
BS	C7	0.60	16/11/13	500000	83	29/01/14	74	14.96	6,243.02	7,546.00	1.21	10.41	83.46

Tuo otino o int	nondo		aira (a)	N/T/ha		
Treatment	ponas	DUC	size (g)	MT/ha	FCR	survival
Z+E+BS	2	75	13.63	10.78	1.285	94.52
Z+S+BS	2	79	14.69	11.68	1.295	95.84
BS	3	73	14.44	10.33	1.19	85.84


Z = Zymedin E = Easy Tab S = Superbiotic BS = Beta Defense+ , Beta Defense , Sludgebuster Beta Defense+ = Beta Defense + RetroMAD1

RetroMAD1 along with Beta-defense have at least 91% survival rate as compared to the neighboring farms where mass mortality occurred during the same culture period.

Effects of RetroMAD1 on Asian Seabass fingerling fishes infected with VNN

Koi Herpes Virus

- Blebbing was observed in the hepatopancreas of an EMS infected shrimp.
- Blebbing is when a cell swells and bursts this also happens to bacteria when a Cationic Antimicrobial Peptide (CAP) is involved.
 Therefore, we hypothesize that there could be a CAP production by the pathogenic bacteria.

Pulsed-field Gel Electrophoresis (PFGE) of pathogenic Vibrio parahaemolyticus

<figure>

Lates calcariter survivor Weight gain and FCR Survival Rate (%) juveniles Final Day Day Day Day Day Initial FCR Treatment Weight 14 22 28 Weight 6 0 100 7.53 Control – feed only 5.7 0 0 0 n.a. 100 0 7.22 Feed+BD 0 5.71 0 0 n.a. 100 100 100 48 15.8 5.65 1.8 Feed+RetroMAD1 48 100 100 100 78 5.67 17.9 Feed+BD+RetroMAD1 78 0.5

Further evidence of oral delivery as drug was absorbed onto fish feed

Superior survival, FCR and weight gain when treated with both Beta-Defense and RetroMAD1.

VNN = Viral Nervous Necrosis

FCR = Food Conversion Ratio i.e. kg feed : kg weight gain BD = Beta-Defense ; an immuno-stimulant type adjuvant

RetroMAD1 together with Beta-defense gave a better survival of Seabass suffering form VNN than just RetroMAD1 alone. Therefore RetroMAD1 can be used as a combinatorial.

In vitro assay on Cell Lines infected with Koi Herpes Virus (KHV).

	Treat	ment
Cell Line	100µg RetroMAD1 Day 1 Post infection	100µg RetroMAD1 Day 7 Post infection
ССВ	No virus growth	No virus growth
KF	No virus growth	No virus growth

CCB= Common Carp Brain Cells **KF=** Koi Fin * All experiments were done 4 times

Dr. Manfred Weidmann University of Stirling Institute of Aquaculture

Transmission Electron Microscope of a phage found to be able to kill Vietnamese EMS strain of *Vibrio parahaemolyticus*

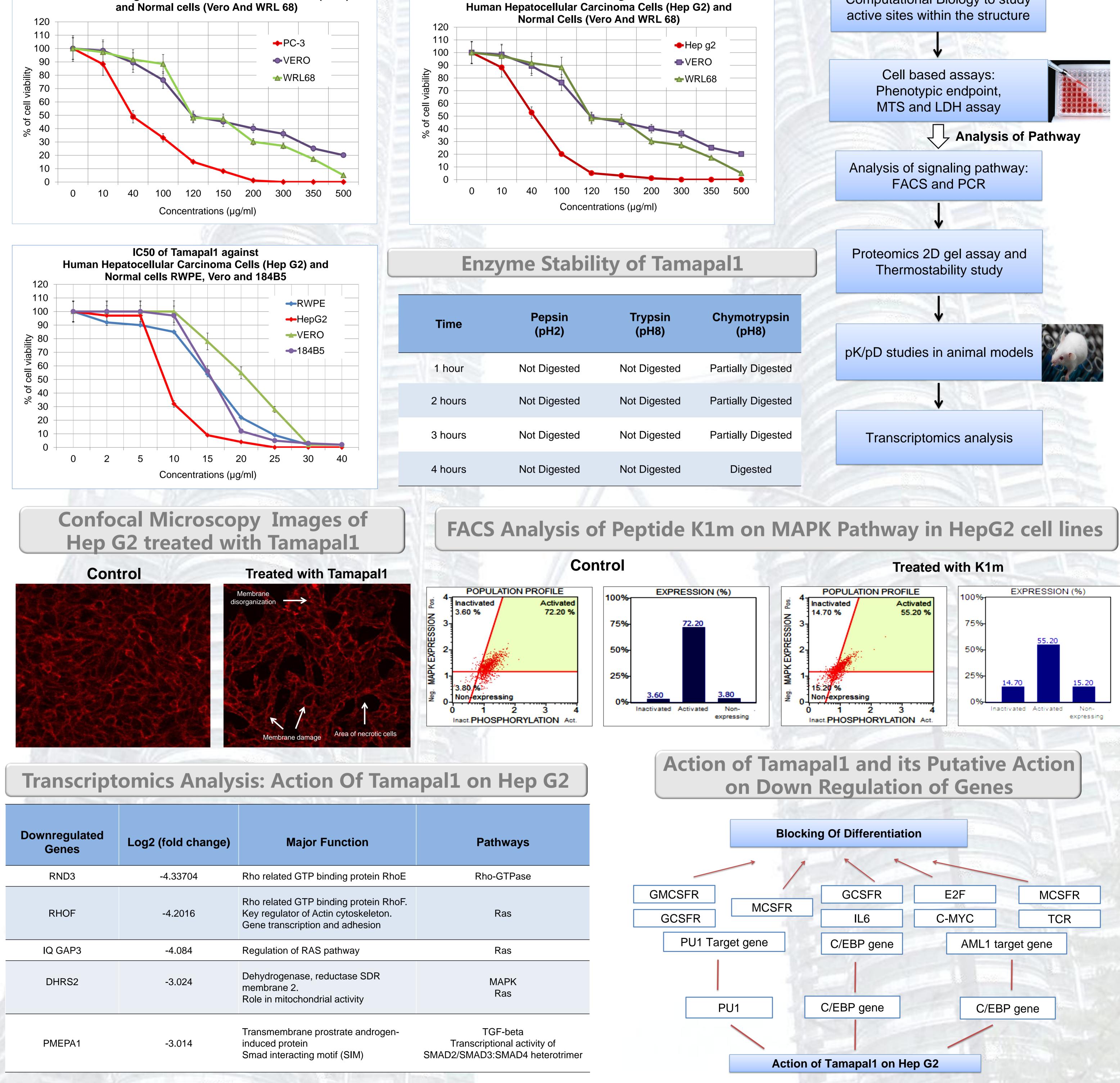
Targeting Cancer: Using Oral Delivery Peptides

Unique features of our fusion compounds:

- ✓ Our drugs are designed for oral delivery
- ✓ Proven to survive the Gastro-Intestinal Tract
- Demonstrated to be thermostable at various conditions
- Screening assays have shown good Therapeutic Index

Schematic Representation of Development of Anti-Cancer Peptide

> Searching for Anticancer peptide candidates


Expression and confirmation of chimeric peptides

Action of Candidate Anticancer Peptide Drug

IC50 of K1m against Human Prostate Cancer Cells (PC-3)

IC50 of K1m against

Computational Biology to study

RND3-4.33704Rho related GTP binding protein RhoERho-GTPaseRHOF-4.2016Rho related GTP binding protein RhoF. Key regulator of Actin cytoskeleton. Gene transcription and adhesionRasQ GAP3-4.084Regulation of RAS pathwayRas
RHOF-4.2016Key regulator of Actin cytoskeleton. Gene transcription and adhesionRasQ GAP3-4.084Regulation of RAS pathwayRas
Debudrogenace, reductoce SDP
DHRS2 -3.024 Dehydrogenase, reductase SDR MAPK membrane 2. Role in mitochondrial activity Ras
PMEPA1 -3.014 Transmembrane prostrate androgen- TGF-beta Smad interacting motif (SIM) SMAD2/SMAD3:SMAD4 heterotrimer